Page 467 - 35_DS702_E_2014_Lightning_Protection_Guide
P. 467

Figure 5.5.3.1   Ring earth electrode around a residential building .  .  .  .  . 140  Figure 5.7.2.7   Comparison of step voltages in the reference model of
          Figure 5.5.4.1   Couplings of DEHN earth rods  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 140  several ring earth electrodes considering the correction
                                                                factor for the reaction of a human body: Soil ionisation is
          Figure 5.5.4.2   Driving an earth rod into the ground by means of a    not considered (left), soil ionisation is considered (right).  . 163
                   hammer frame and a vibration hammer  .  .  .  .  .  .  .  .  .  . 141
                                                       Figure 5.8.1   Test in a salt mist chamber .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 164
          Figure 5.5.6.1   Intermeshed earth-termination system of an industrial    Figure 5.8.2   Test in a Kesternich chamber  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 164
                   plant  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 142
                                                       Figure 5.8.3   New and artificially aged components  .  .  .  .  .  .  .  .  .  .  . 165
          Figure 5.5.7.1.1  Application example of a non-polarisable measuring
                   electrode (copper / copper sulphate electrode) for tapping    Figure 5.8.4   Test combinations for MV clamps (parallel and cross
                   a potential within the electrolyte (cross-sectional view)  .  . 143  arrangement).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
          Figure 5.5.7.2.1  Galvanic cell: Iron / copper  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 145  Figure 5.8.5   Specimen (MV clamp) fixed on an insulating plate for a
                                                                test in an impulse current laboratory.  .  .  .  .  .  .  .  .  .  .  . 166
          Figure 5.5.7.2.2  Concentration cell  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 145
                                                       Figure 5.8.6   Tensile test of conductors.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
         Figure 5.5.7.2.3  Concentration cell: Iron in the soil / iron in concrete  .  .  .  . 145
         Figure 5.5.7.2.4  Concentration cell: Galvanised steel in the soil / steel    Figure 5.8.7   Flashover along the DEHNiso spacer made of GRP.  .  .  .  . 168
                   (black) in concrete  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 145  Figure 5.9.1   Definitions according to EN 50511, Figure 1  .  .  .  .  .  .  .  . 169
         Figure 5.6.1   Principle of the separation distance  .  .  .  .  .  .  .  .  .  .  .  . 149  Figure 5.9.2   Single-pole fault in a transformer station with integrated
                                                                main low-voltage distribution board  .  .  .  .  .  .  .  .  .  .  .  . 171
         Figure 5.6.2   Material factors for an air-termination rod on a flat roof.  . 150
         Figure 5.6.3   k m  in case of different materials with air clearance   .  .  .  . 150  Figure 5.9.3   Schematic diagram of the earth-termination system at a
                                                                transformer station (source: Niemand / Kunz; “Erdungs-
          Figure 5.6.4   k m  in case of different materials without air clearance .  .  . 150  anlagen”, page 109; VDE-Verlag)   .  .  .  .  .  .  .  .  .  .  .  .  . 172
          Figure 5.6.5   Air-termination mast with k c  = 1 .  .  .  .  .  .  .  .  .  .  .  .  .  . 151  Figure 5.9.4   Connection of an earth rod to the ring earth electrode of
          Figure 5.6.6   Determination of k c  in case of two masts with spanned    the station  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 173
                   cable and a type B earth electrode  .  .  .  .  .  .  .  .  .  .  .  .  . 152  Figure 5.9.5   Current carrying capability of earth electrode materials  .  . 173
          Figure 5.6.7   Determination of k c  in case of a gable roof with two    Figure 5.9.6   Corrosion of a galvanised earth rod after 7 years   .  .  .  .  . 174
                   down conductors .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 152  Figure 5.9.7   Corrosion of a galvanised earth rod (below) and a stain-
          Figure 5.6.8   Gable roof with four down conductors .  .  .  .  .  .  .  .  .  .  . 153  less steel earth electrode (above) after 2.5 years.  .  .  .  .  . 174
          Figure 5.6.9   Values of coefficient k c  in case of a meshed network    Figure 6.1.1   Principle of lightning equipotential bonding consisting of
                   of air-termination conductors and a type B earthing    lightning and protective equipotential bonding  .  .  .  .  .  . 177
                   arrangement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153  Figure 6.1.2   K12 equipotential bonding bar, Part No. 563 200   .  .  .  .  . 179
          Figure 5.6.10   Values of coefficient k c  in case of a system consisting    Figure 6.1.3   R15 equipotential bonding bar, Part No. 563 010   .  .  .  .  . 179
                   of several down conductors according Figure C.5 of    Figure 6.1.4   Earthing pipe clamp, Part No. 407 114  .  .  .  .  .  .  .  .  .  .  . 179
                   IEC 62305-3 (EN 62305-3)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153
                                                       Figure 6.1.5   Earthing pipe clamp, Part No. 540 910  .  .  .  .  .  .  .  .  .  .  . 179
          Figure 5.6.11   Current distribution in case of several conductors  .  .  .  .  . 154
          Figure 5.6.12   Example: Roof-mounted structure; system with several    Figure 6.1.6   Through-wired equipotential bonding bar  .  .  .  .  .  .  .  .  . 179
                   down conductors .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 154  Figure 6.2.1   DEHNbloc M for installation in conformity with the
                                                                lightning protection zone concept at the boundaries
          Figure 5.7.1   Step and touch voltage.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 156
                                                                from 0 A  – 1 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 181
          Figure 5.7.2   Potential control – Basic principle and curve of the    Figure 6.2.2   DEHNventil combined arrester for installation in con-
                   potential gradient area .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 157  formity with the lightning protection zone concept at
          Figure 5.7.3   Possible potential control in the entrance area of a    the boundaries from 0 A  – 2.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 181
                   structure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 157  Figure 6.3.1   Lightning equipotential bonding with an isolated air-
         Figure 5.7.4   Potential control for a floodlight or mobile phone mast  .  . 157  termination system and a HVI Conductor for professional
         Figure 5.7.5   Connection control at the ring / foundation earth electrode  . 157  antenna installations according to IEC 62305-3
                                                                (EN 62305-3) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 181
          Figure 5.7.1.1   Area to be protected for a person  .  .  .  .  .  .  .  .  .  .  .  .  . 158
                                                       Figure 6.3.2   Isolated installation of a lightning protection system and
          Figure 5.7.1.2   Design of a CUI Conductor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 158  a mobile phone antenna  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 182
          Figure 5.7.1.3   Withstand voltage test under wet conditions   .  .  .  .  .  .  . 159  Figure 6.3.3   EMC spring terminals for the protected and unprotected
          Figure 5.7.1.4   CUI Conductor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 159  side of a BLITZDUCTOR XT for permanent low-impedance
                                                                shield contact with a shielded signal line; with snap-on
          Figure 5.7.1.5   a) Loop formed by a down conductor and a person    insulating cap for indirect shield earthing, cable ties and
                   b) Mutual inductance M and induced voltage U i .  .  .  .  .  . 160
                                                                insulating strips.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 183
          Figure 5.7.2.1   HUGO model with feet in step position acting as contact   Figure 6.3.4   Lightning current carrying shield connection system (SAK)  183
                   points (source: TU Darmstadt)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 160
                                                       Figure 6.3.5   Lightning equipotential bonding for the connection of a
          Figure 5.7.2.2   Reference system for information on the step voltage  .  .  . 161
                                                                telecommunications device by means of BLITZDUCTOR XT
          Figure 5.7.2.3   Comparison of the step voltages in the reference model    (use permitted by Deutsche Telekom).  .  .  .  .  .  .  .  .  .  .  . 184
                   when using several ring earth electrodes: Soil ionisation    Figure 6.3.6   Lightning current carrying DEHN equipotential bonding
                   is not considered (left), soil ionisation is considered (right)  162
                                                                enclosures (DPG LSA) for LSA-2/10 technology   .  .  .  .  .  . 184
          Figure 5.7.2.4   Person loading the step voltage on the soil surface  .  .  .  . 162
                                                       Figure 7.1.1   Overall view of the lightning protection zone concept
          Figure 5.7.2.5   Highly simplified model of a human body to test its    according to IEC 62305-4 (EN 62305-4)  .  .  .  .  .  .  .  .  .  . 187
                   reaction to step voltage (marked in red)  .  .  .  .  .  .  .  .  .  . 162  Figure 7.1.2a   Lightning protection zone concept according to
          Figure 5.7.2.6   Reaction of a human body to the arising step voltage  .  .  . 163  IEC 62305-4 (EN 62305-4)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 188
          466  LIGHTNING PROTECTION GUIDE                            www.dehn-international.com
   462   463   464   465   466   467   468   469   470   471   472