Page 464 - 35_DS702_E_2014_Lightning_Protection_Guide
P. 464

B. Figures and tables



       Figure 2.1.1   Downward flash (cloud-to-earth flash) .  .  .  .  .  .  .  .  .  .  .   15  Figure 3.3.1.3   DEHN Risk Tool, evaluation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   51
       Figure 2.1.2   Discharge mechanism of a negative downward flash    Figure 3.3.2.1.1  Kirchhoff’s law with nodes   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   53
                (cloud-to-earth flash).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   16  Figure 3.3.2.1.2  Kirchhoff’s law: Example of a building with a mesh on the
       Figure 2.1.3   Discharge mechanism of a positive downward flash    roof.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   53
                (cloud-to-earth flash).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   16  Figure 3.3.2.1.3  Kirchhoff’s law: Example of a building with air-termination
       Figure 2.1.4   Upward flash (earth-to-cloud flash)   .  .  .  .  .  .  .  .  .  .  .  .   16  system  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   53
       Figure 2.1.5   Discharge mechanism of a negative upward flash    Figure 3.3.2.1.4  Resistors of the building  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   53
                (earth-to-cloud flash).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   17  Figure 3.3.2.1.5  Node equation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   54
       Figure 2.1.6   Discharge mechanism of a positive upward flash    Figure 3.3.3.1   DEHN Earthing Tool, type A earth-termination system  .  .  .   54
                (earth-to-cloud flash).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   17  Figure 3.3.4.1   DEHN Air-Termination Tool, gable roof with PV system.  .  .   55
       Figure 2.1.7   Possible components of a downward flash.  .  .  .  .  .  .  .  .   18  Figure 4.1   Components of a lightning protection system  .  .  .  .  .  .  .   61
       Figure 2.1.8   Possible components of an upward flash.  .  .  .  .  .  .  .  .  .   18  Figure 4.2   Lightning protection system (LPS)  .  .  .  .  .  .  .  .  .  .  .  .  .   61
       Figure 2.2.1   Potential distribution in case of a lightning strike to
                homogenous ground  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   19  Figure 5.1.1   Method of designing air-termination systems for high
                                                             buildings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   63
       Figure 2.2.2   Animals killed by electric shock due to step voltage  .  .  .  .   19  Figure 5.1.1.1   Starting upward leader defining the point of strike.  .  .  .  .   64
       Figure 2.2.3   Potential rise of the building’s earth-termination system    Figure 5.1.1.2   Model of a rolling sphere; source: Prof. Dr. A. Kern, Aachen   64
                with respect to the remote earth caused by the peak
                value of the lightning current.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   19  Figure 5.1.1.3   Schematic application of the rolling sphere method
       Figure 2.2.4   Risk for electrical installations resulting from a potential    at a building with very irregular surface  .  .  .  .  .  .  .  .  .  .   65
                rise of the earth-termination system  .  .  .  .  .  .  .  .  .  .  .  .   19  Figure 5.1.1.4   New administration building: Model with rolling sphere
       Figure 2.3.1   Square-wave voltage induced in loops due to the current   according to class of LPS I; source: WBG Wiesinger   .  .  .  .   66
                steepness Δi/Δt of the lightning current  .  .  .  .  .  .  .  .  .  .   20  Figure 5.1.1.5   New DAS administration building: Areas threatened by
                                                             lightning strikes for class of LPS I, top view (excerpt);
       Figure 2.3.2   Sample calculation for induced square-wave voltages in   source: WBG Wiesinger .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   66
                squared loops.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   20
                                                    Figure 5.1.1.6   Aachen Cathedral: Model with surroundings and rolling
       Figure 2.4.1   Energy conversion at the point of strike due to the charge    spheres of classes of LPS II and III; source: Prof. Dr. A. Kern,
                of the lightning current.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   21
                                                             Aachen   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   66
       Figure 2.4.2   Effect of a short stroke arc on a metal surface  .  .  .  .  .  .  .   21
                                                    Figure 5.1.1.7   Penetration depth p of the rolling sphere.  .  .  .  .  .  .  .  .  .   67
       Figure 2.4.3   Plates perforated by the effects of long stroke arcs   .  .  .  .   21
                                                    Figure 5.1.1.8   Air-termination system for roof-mounted structures and
       Figure 2.5.1   Temperature rise and force resulting from the specific    their protected volume   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   67
                energy of the lightning current .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   22
                                                    Figure 5.1.1.9   Calculation of Δh for several air-termination rods
       Figure 2.5.2   Electrodynamic force between parallel conductors.  .  .  .  .   23  according to the rolling sphere method   .  .  .  .  .  .  .  .  .  .   67
       Figure 2.8.1   Lightning current measurements by the Austrian lightning   Figure 5.1.1.10  Meshed air-termination system.  .  .  .  .  .  .  .  .  .  .  .  .  .  .   68
                research group ALDIS and DEHN at the ORS transmission    Figure 5.1.1.11  Protective angle and comparable radius of the rolling
                mast on top of the Gaisberg mountain near Salzburg  .  .  .   24
                                                             sphere  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   68
       Figure 2.8.2   Long stroke with superimposed impulse currents of an    Figure 5.1.1.12  Protective angle α as a function of height h
                upward flash with a total charge of approximately 405 As –   depending on the class of LPS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   68
                recorded at the Gaisberg transmission mast during a
                winter thunderstorm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   25  Figure 5.1.1.13  Cone-shaped protected volume   .  .  .  .  .  .  .  .  .  .  .  .  .  .   68
       Figure 2.8.3   Negative downward flash with M-component (top) and    Figure 5.1.1.14  Example of air-termination systems with protective angle α  . 69
                partial lightning current in a power supply line (below) –   Figure 5.1.1.15  Volume protected by an air-termination conductor.  .  .  .  .   69
                recorded at the Gaisberg transmission mast  .  .  .  .  .  .  .  .   25  Figure 5.1.1.16  Volume protected by an air-termination rod  .  .  .  .  .  .  .  .   69
       Figure 3.2.3.1   Flash density in Germany (average from 1999 to 2011)    Figure 5.1.1.17  Protection of small-sized roof-mounted structures against
                according to Supplement 1 of DIN EN 62305-2 Ed. 2:2013    direct lightning strikes by means of air-termination rods.  .   71
                (source: Blitz-Informations-Dienst by Siemens).  .  .  .  .  .  .   33
       Figure 3.2.3.2   Equivalent collection area A D  for direct lightning strikes to    Figure 5.1.1.18  Gable roof with conductor holder  .  .  .  .  .  .  .  .  .  .  .  .  .   71
                an isolated structure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   35  Figure 5.1.1.19  Flat roof with air-termination rods and conductor holders:
       Figure 3.2.3.3   Equivalent collection area A M  , A L  , A I  for indirect lightning   Protection of the domelights   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   71
                strikes to the structure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   35  Figure 5.1.1.20  Isolated external lightning protection system with two
       Figure 3.2.8.1   Flow diagram for determining the need of protection and    separate air-termination masts according to the protective
                                                             angle method: Projection on a vertical surface .  .  .  .  .  .  .   71
                for selecting protection measures in case of types of loss
                L1 to L3.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   46  Figure 5.1.1.21  Isolated external lightning protection system consisting
                                                             of two separate air-termination masts connected by a
       Figure 3.2.9.1   Flow diagram for selecting protection measures in case of    horizontal air-termination conductor: Projection on a
                loss of economic value   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   47  vertical surface via the two masts (vertical section)  .  .  .  .   72
       Figure 3.3.1   Start screen of the DEHNsupport Toolbox software.  .  .  .  .   49  Figure 5.1.2.1   Air-termination system on a gable roof.  .  .  .  .  .  .  .  .  .  .   73
       Figure 3.3.1.1   Calculation of the collection area   .  .  .  .  .  .  .  .  .  .  .  .  .   50  Figure 5.1.2.2   Height of a roof-mounted structure made of non-
       Figure 3.3.1.2   DEHN Risk Tool, division into zones.  .  .  .  .  .  .  .  .  .  .  .  .   51  conductive material (e.g. PVC), h ≤ 0.5 m  .  .  .  .  .  .  .  .  .   73
            www.dehn-international.com                             LIGHTNING PROTECTION GUIDE  463
   459   460   461   462   463   464   465   466   467   468   469