Page 468 - 35_DS702_E_2014_Lightning_Protection_Guide
P. 468

Figure 7.1.2b   Lightning protection zone concept according to    Figure 7.5.2.9   Lightning current arrester at the transition from LPZ 0 A
                IEC 62305-4 (EN 62305-4)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 189  to LPZ 1.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 205
       Figure 7.3.1   Reduction of the magnetic field by means of grid-like    Figure 7.5.3.1   Use of BLITZDUCTOR XT combined arresters .  .  .  .  .  .  .  . 205
                shields  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191  Figure 7.6.2.1   Only one SPD (LPZ 0/1/2) required (LPZ 2 integrated in
       Figure 7.3.2a   Magnetic field in case of a direct lightning strike in LPZ 1   LPZ 1).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 206
                (LEMP), IEC 62305-4 (EN 62305-4).  .  .  .  .  .  .  .  .  .  .  .  . 191  Figure 7.6.2.2   DEHNventil M TT 255.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 206
       Figure 7.3.2b   Magnetic field strength in case of a direct lightning strike    Figure 7.6.3.1   Combination guide for Yellow/Line SPD classes (see also
                in LPZ 2.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191  Figure 7.8.2.2)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 206
       Figure 7.3.3   Volume for electronic devices in LPZ 1  .  .  .  .  .  .  .  .  .  .  . 193  Figure 7.7.1.1   Ring equipotential bonding and fixed earthing terminal
       Figure 7.3.4   Magnetic field in case of a nearby lightning strike (LEMP),    for the connection of metal installations .  .  .  .  .  .  .  .  .  . 208
                IEC 62305-4 (EN 62305-4)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 194  Figure 7.7.2.1   Lightning protection system with spatial shielding and
       Figure 7.3.5   Magnetic field in case of a nearby lightning strike (LEMP),    coordinated surge protection according to Figure A.1 of
                IEC 62305-4 (EN 62305-4)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 194  IEC 62305-4 (EN 62305-4)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208
       Figure 7.3.6   Use of the reinforcing rods of a structure for shielding    Figure 7.7.2.2   DEHNflex M surge protective device for final circuits   .  .  . 209
                and equipotential bonding  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 194  Figure 7.7.2.3   Multipole DEHNguard M TT surge arrester .  .  .  .  .  .  .  .  . 209
       Figure 7.3.7a   Galvanised reinforcement mats for shielding the building  . 195  Figure 7.7.3.1   Protection of industrial electronic equipment (e.g. a PLC)
       Figure 7.3.7b   Use of galvanised reinforcement mats for shielding, e.g.    by BLITZDUCTOR XT and SPS Protector.  .  .  .  .  .  .  .  .  .  . 209
                in case of planted roofs.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 195  Figure 7.8.1.1   Three-pole DEHNbloc lightning current arrester  .  .  .  .  .  . 210
       Figure 7.3.8   Shielding of a building  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 195  Figure 7.8.1.2   Multipole DEHNguard M TT surge arrester .  .  .  .  .  .  .  .  . 210
       Figure 7.3.9   Earthing bus conductor / ring equipotential bonding .  .  .  . 196  Figure 7.8.1.3   Modular DEHNventil M TNS combined arrester   .  .  .  .  .  . 210
       Figure 7.3.1.1   No shield connection – No shielding from capacitive /    Figure 7.8.1.4   Let-through energy curve at the reference varistor with
                inductive coupling  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197  an upstream spark-gap-based type 1 SPD  .  .  .  .  .  .  .  .  . 211
       Figure 7.3.1.2   Shield connection at both ends – Shielding from capa-   Figure 7.8.1.5   Let-through energy curve at the reference varistor with
                citive / inductive coupling .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197  an upstream varistor-based type 1 SPD.  .  .  .  .  .  .  .  .  .  . 211
       Figure 7.3.1.3   Shield connection at both ends – Solution: Direct and    Figure 7.8.2.1   Coordination according to the let-through method of two
                indirect shield earthing .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198  surge protective devices and one terminal device, cascade
       Figure 7.3.1.4   BLITZDUCTOR XT with SAK BXT LR shield terminal with    (according to IEC 61643-22 (CLC/TS 61643-22))  .  .  .  .  .  . 212
                direct or indirect shield earthing  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198  Figure 7.8.2.2   Examples of the energy-coordinated use of arresters
                                                             according to the Yellow/Line SPD class and structure of
       Figure 7.3.1.5   Shield connection.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198
                                                             the Yellow/Line SPD class symbol.  .  .  .  .  .  .  .  .  .  .  .  .  . 213
       Figure 7.3.1.6   Shield connection at both ends – Shielding from capa-   Figure 8.1.1   Use of arresters in power supply systems (schematic
                citive / inductive coupling .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198
                                                             diagram)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217
       Figure 7.4.1   Equipotential bonding network in a structure    .  .  .  .  .  .  . 199
                                                    Figure 8.1.3.1   RCD destroyed by lightning impulse currents.  .  .  .  .  .  .  . 221
       Figure 7.4.2   Ring equipotential bonding bar in a computer room .  .  .  . 199  Figure 8.1.3.2   “3 – 0” circuit in a TN-C system .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221
       Figure 7.4.3   Connection of the ring equipotential bonding bar to    Figure 8.1.3.3a  “4 – 0” circuit in a TN-S system  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 222
                the equipotential bonding network via a fixed earthing
                terminal   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 200  Figure 8.1.3.3b  “3+1” circuit in a TN-S system .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 222
       Figure 7.4.4   Integration of electronic systems in the equipotential    Figure 8.1.3.4   SPDs used in a TN-C-S system  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 222
                bonding network according to IEC 62305-4 (EN 62305-4)  200  Figure 8.1.3.5   SPDs used in a TN-S system   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 223
       Figure 7.4.5   Combination of the integration methods according to    Figure 8.1.3.6   SPDs used in a TN system – Single-family house .  .  .  .  .  . 223
                Figure 7.4.4: Integration in the equipotential bonding    Figure 8.1.3.7   SPDs used in a TN system – Office building with separa-
                network according to IEC 62305-4 (EN 62305-4)   .  .  .  .  . 201  tion of the PEN conductor in the main distribution board  . 224
       Figure 7.5.1.1   Connection of the EBB to the fixed earthing terminal  .  .  . 201  Figure 8.1.3.8   SPDs used in a TN system – Office building with separa-
       Figure 7.5.2.1   Transformer outside the structure   .  .  .  .  .  .  .  .  .  .  .  .  . 202  tion of the PEN conductor in the sub-distribution board  .  . 225
       Figure 7.5.2.2   Transformer inside the structure (LPZ 0 integrated in    Figure 8.1.3.9   SPDs used in a TN system – Industrial building with sepa-
                LPZ 1).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202  ration of the PEN conductor in the sub-distribution board  . 226
       Figure 7.5.2.3   Example of an equipotential bonding system in a struc-   Figure 8.1.3.10  SPDs used in a TN system – Arrester with integrated
                ture with several entries for the external conductive parts    backup fuse in an industrial building.  .  .  .  .  .  .  .  .  .  .  . 227
                and with an inner ring conductor connecting the equi-   Figure 8.1.3.11  SPDs used in a TN system – 400/690 V industrial building  . 227
                potential bonding bars   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202
                                                    Figure 8.1.4.1   TT system (230/400 V); “3+1” circuit.  .  .  .  .  .  .  .  .  .  .  . 228
       Figure 7.5.2.4   Internal lightning protection with a common entry point    Figure 8.1.4.2   SPDs used in a TT system.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 228
                for all supply lines  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 203
                                                    Figure 8.1.4.3   SPDs used in a TT system – Single-family house  .  .  .  .  .  . 229
       Figure 7.5.2.5   Model of the lightning current distribution in case of
                several parallel load systems – String topology   .  .  .  .  .  . 203  Figure 8.1.4.4   SPDs used in a TT system – Office building.  .  .  .  .  .  .  .  . 230
       Figure 7.5.2.6   Model of the lightning current distribution in case of    Figure 8.1.4.5   SPDs used in a TT system – Industrial building .  .  .  .  .  .  . 231
                several parallel load systems – String topology   .  .  .  .  .  . 204  Figure 8.1.5.1   SPDs used in a IT system   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 232
       Figure 7.5.2.7   DEHNventil combined arrester  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 204  Figure 8.1.5.2a  IT system without incorporated neutral conductor; “3 – 0”
       Figure 7.5.2.8   Lightning equipotential bonding for power supply and    circuit.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 233
                information technology systems situated centrally at one    Figure 8.1.5.2b  IT system with incorporated neutral conductor;
                point  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 204  “4 – 0” circuit  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 233



            www.dehn-international.com                             LIGHTNING PROTECTION GUIDE  467
   463   464   465   466   467   468   469   470   471   472   473