Page 466 - 35_DS702_E_2014_Lightning_Protection_Guide
P. 466

Figure 5.2.4.13  Integration of an antenna in an existing lightning pro-   Figure 5.5.11   Earth resistance R A  of crossed surface earth electrodes
                tection system by means of a HVI Conductor.  .  .  .  .  .  .  . 107  (90 °) as a function of the burial depth .  .  .  .  .  .  .  .  .  .  . 124
       Figure 5.2.4.14  HVI Conductor installed on a radio tower  .  .  .  .  .  .  .  .  . 107  Figure 5.5.12   Earth potential U E  between the supply line of the earth
       Figure 5.2.4.15  HVI Conductor installed on a gas pressure control and    electrode and the earth surface of crossed surface earth
                measurement system.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108  electrodes (90 °) as a function of the distance from the
                                                             cross centre point (burial depth of 0.5 m)  .  .  .  .  .  .  .  .  . 124
       Figure 5.2.4.16  Version for use in hazardous areas 1, metal façade  .  .  .  . 109  Figure 5.5.13   Conventional earthing impedance R st  of single-arm or
       Figure 5.2.4.17  Version for use in hazardous areas 2, metal façade  .  .  .  . 109  multiple-arm surface earth electrodes of equal length  .  .  . 125
       Figure 5.2.4.18  Protection of a biogas fermenter by means of a    Figure 5.5.14   Reduction factor p for calculating the total earth resis-
                HVI Conductor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109  tance R A  of earth rods connected in parallel  .  .  .  .  .  .  .  . 125
       Figure 5.4.1   Examples (details) of an external lightning protection    Figure 5.5.15   Earth resistance R A  of surface earth electrodes and earth
                system installed on a building with a sloped tiled roof.  .  . 111  rods as a function of the earth electrode length I   .  .  .  .  . 127
       Figure 5.4.2   Air-termination rod for a chimney  .  .  .  .  .  .  .  .  .  .  .  .  . 111  Figure 5.5.1.1   Minimum lengths of earth electrodes   .  .  .  .  .  .  .  .  .  .  . 128
       Figure 5.4.3   Application on a flat roof.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 111  Figure 5.5.1.2   Type B earth electrode – Determination of the mean
       Figure 5.4.4   Dimensions for ring earth electrodes .  .  .  .  .  .  .  .  .  .  .  . 111  radius – Sample calculation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 128
       Figure 5.4.5   Points threatened by corrosion .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 111  Figure 5.5.1.3   Type B earth electrode – Determination of the mean
                                                             radius – Sample calculation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 128
       Figure 5.4.1.1   Air-termination system – Expansion compensation by
                means of a bridging braid  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 113  Figure 5.5.2.1   Foundation earth electrode with terminal lug  .  .  .  .  .  .  . 129
       Figure 5.4.2.1a  External lightning protection system of an industrial    Figure 5.5.2.2   Mesh of a foundation earth electrode  .  .  .  .  .  .  .  .  .  .  . 130
                building.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 113  Figure 5.5.2.3   Foundation earth electrode.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130
       Figure 5.4.2.1b  External lightning protection system of a residential    Figure 5.5.2.4   Foundation earth electrode in use  .  .  .  .  .  .  .  .  .  .  .  .  . 130
                building.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 114
                                                    Figure 5.5.2.5   Fixed earthing terminal.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130
       Figure 5.4.2.2   DEHNsnap and DEHNgrip conductor holders.  .  .  .  .  .  .  . 115
                                                    Figure 5.5.2.6   Meshed foundation earth electrode  .  .  .  .  .  .  .  .  .  .  .  . 131
       Figure 5.4.3.1   Conductor holder with DEHNsnap for ridge tiles .  .  .  .  .  . 116  Figure 5.5.2.7   Diameters of reinforcing steels .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 131
       Figure 5.4.3.2   SPANNsnap with DEHNsnap plastic conductor holder  .  .  . 116  Figure 5.5.2.8   Bridging braid with fixed earthing terminals  .  .  .  .  .  .  .  . 132
       Figure 5.4.3.3   FIRSTsnap for mounting on existing ridge clips.  .  .  .  .  .  . 116  Figure 5.5.2.9   Bridging a foundation earth electrode by means of an
       Figure 5.4.3.4   UNIsnap roof conductor holder with pre-punched brace –    expansion strap.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132
                Used on pantiles and smooth tiles (e.g. pantile roofs)  .  .  . 116  Figure 5.5.2.10  Membrane of foundation slabs.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132
       Figure 5.4.3.5   UNIsnap roof conductor holder with pre-punched brace –   Figure 5.5.2.11  Use of dimpled membranes   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 133
                Used on slated roofs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 116
       Figure 5.4.3.6   FLEXIsnap roof conductor holder for direct fitting on the   Figure 5.5.2.12  Dimpled membrane.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 133
                seams.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117  Figure 5.5.2.13  Arrangement of the foundation earth electrode in case
       Figure 5.4.3.7   Roof conductor holder for hanging into the lower seam    of a “white tank” according to the German DIN 18014
                                                             standard  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 133
                of pantile roofs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117
       Figure 5.4.3.8   ZIEGELsnap for fixing between flat tiles or slabs .  .  .  .  .  . 117  Figure 5.5.2.14  Three-dimensional representation of the ring earth
                                                             electrode, functional equipotential bonding conductor
       Figure 5.4.3.9   PLATTENsnap roof conductor holder for overlapping    and connections via pressure-water-tight wall bushings  .  . 134
                constructions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117  Figure 5.5.2.15  Wall bushing installed in the formwork   .  .  .  .  .  .  .  .  .  . 135
       Figure 5.5.1   Earth surface potential and voltages in case of a current    Figure 5.5.2.16  Test setup (sectional view) with connection for the
                carrying foundation earth electrode FE and control earth   pressure water test .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 135
                electrode CE  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 118
       Figure 5.5.2   Current flowing out of a spherical earth electrode   .  .  .  .  . 120  Figure 5.5.2.17  Waterproof wall bushing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 135
       Figure 5.5.3   Earth resistance R A  of a spherical earth electrode with    Figure 5.5.2.18  Bituminous sheetings used as sealing material.  .  .  .  .  .  . 135
                20 cm, 3 m deep, at ρ E  = 200 Ωm as a function of the   Figure 5.5.2.19  Arrangement of the earth electrode in case of a “black
                distance x from the centre of the sphere  .  .  .  .  .  .  .  .  .  . 120  tank” according to the German DIN 18014 standard.  .  .  . 136
       Figure 5.5.4   Earth resistivity ρ E  in case of different types of soil   .  .  .  . 121  Figure 5.5.2.20  Ring earth electrode in case of perimeter insulation;
       Figure 5.5.5   Earth resistivity ρ E  as a function of the time of year    source: Company Mauermann  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 136
                without precipitation effects (burial depth of the earth    Figure 5.5.2.21  Detailed view of a ring earth electrode; source:
                electrode < 1.5 m)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121  Company Mauermann  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 136
       Figure 5.5.6   Determination of the earth resistivity ρ E  by means of a    Figure 5.5.2.22  Arrangement of the foundation earth electrode in case
                four-terminal measuring method (WENNER method).  .  .  . 121  of a closed floor slab (fully insulated) acc. to the German
       Figure 5.5.7   Earth resistance R A  as a function of length I of the surface    DIN 18014 standard  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 137
                earth electrode in case of different earth resistivities ρ E   .  . 122  Figure 5.5.2.23  Perimeter insulation: Foam glass granulate is filled in;
       Figure 5.5.8   Earth potential U E  between the supply line of the earth   source: TECHNOpor Handels GmbH   .  .  .  .  .  .  .  .  .  .  .  . 137
                electrode and the earth surface as a function of the dis-   Figure 5.5.2.24  Foundation earth electrode for pad foundations with
                tance from the earth electrode in case of an strip earth    terminal lug; source: Wettingfeld, Krefeld  .  .  .  .  .  .  .  .  . 138
                electrode (8 m long) in different depths  .  .  .  .  .  .  .  .  .  . 122  Figure 5.5.2.25  Spacer with cross unit  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 138
       Figure 5.5.9   Maximum step voltage U S  as a function of the burial    Figure 5.5.2.26  Arrangement of the foundation earth electrode in
                depth for a stretched strip earth electrode   .  .  .  .  .  .  .  .  . 122  case of a strip foundation (insulated basement wall)
       Figure 5.5.10   Earth resistance R A  of earth rods as a function of their    according to the German DIN 18014 standard .  .  .  .  .  .  . 139
                length I in case of different earth resistivities ρ E   .  .  .  .  .  . 123  Figure 5.5.2.27  Fresh concrete with steel fibres.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 139



            www.dehn-international.com                             LIGHTNING PROTECTION GUIDE  465
   461   462   463   464   465   466   467   468   469   470   471